1. 列表推导式(List Comprehension)
列表推导式是一种快速创建列表的方法,它比传统的循环方式更快、更简洁。
代码示例:- # 传统方式
- squares = []
- for i in range(10):
- squares.append(i ** 2)
- print(squares)
- # 列表推导式
- squares = [i ** 2 for i in range(10)]
- print(squares)
复制代码 输出结果:- [0, 1, 4, 9, 16, 25, 36, 49, 64, 81][0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
复制代码 解释:列表推导式语法更简洁,执行速度更快。它在内存中一次性创建整个列表,而不是逐个添加元素。
2. 字典推导式(Dictionary Comprehension)
字典推导式可以用来快速创建字典。
代码示例:- # 传统方式
- d = {}
- for i in range(10):
- d[i] = i * 2
- print(d)
- # 字典推导式
- d = {i: i * 2 for i in range(10)}
- print(d)
复制代码 输出结果:- {0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9: 18}{0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9: 18}
复制代码 解释:字典推导式同样提高了代码的可读性和执行效率。
3. 集合推导式(Set Comprehension)
集合推导式用于创建无序且不重复的元素集合。
代码示例:- # 传统方式
- s = set()
- for i in range(10):
- s.add(i)
- print(s)
- # 集合推导式
- s = {i for i in range(10)}
- print(s)
复制代码 输出结果:- {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
复制代码 解释:集合推导式同样提高了代码的可读性和执行效率。
4. 生成器表达式(Generator Expression)
生成器表达式可以创建一个生成器对象,它在迭代时才会计算值,节省了内存空间。
代码示例:- # 传统方式
- squares = []
- for i in range(1000000):
- squares.append(i ** 2)
- # 生成器表达式
- squares = (i ** 2 for i in range(1000000))
- # 使用生成器
- for square in squares:
- print(square)
复制代码 输出结果:解释:生成器表达式在迭代时才计算值,节省了大量内存空间。
5. 装饰器(Decorator)
装饰器可以在不修改原始函数代码的情况下增强其功能。
代码示例:- def my_decorator(func):
- def wrapper():
- print("Something is happening before the function is called.")
- func()
- print("Something is happening after the function is called.")
- return wrapper
- @my_decorator
- def say_hello():
- print("Hello!")
- say_hello()
复制代码 输出结果:- Something is happening before the function is called.Hello!Something is happening after the function is called.
复制代码 解释:装饰器可以为函数添加额外的功能,如日志记录、性能测试等。
6. 闭包(Closure)
闭包可以让函数记住并访问其定义时所在的环境中的变量。
代码示例:- def outer(x):
- def inner(y):
- return x + y
- return inner
- add_five = outer(5)
- print(add_five(10))
复制代码 输出结果:解释:闭包可以让函数记住外部变量的值,实现更灵活的功能。
7. 单下划线变量(_)
单下划线变量通常用于临时存储或丢弃值。
代码示例:输出结果:解释:单下划线变量表示不关心的变量。
8. 双星号参数(**kwargs)
双星号参数可以接收任意数量的关键字参数。
代码示例:- def func(**kwargs):
- print(kwargs)
- func(a=1, b=2, c=3)
复制代码 输出结果:- {'a': 1, 'b': 2, 'c': 3}1.
复制代码 解释:双星号参数可以接收任意数量的关键字参数,方便函数设计。
9. 使用内置函数和标准库
Python提供了许多高效的内置函数和标准库,使用它们可以显著提高程序性能。
代码示例:- import timeit
- # 使用内置函数
- start_time = timeit.default_timer()
- result = sum(range(1000000))
- end_time = timeit.default_timer()
- print(f"sum() took {end_time - start_time:.6f} seconds")
- print(result)
- # 不使用内置函数
- start_time = timeit.default_timer()
- result = 0
- for i in range(1000000):
- result += i
- end_time = timeit.default_timer()
- print(f"Loop took {end_time - start_time:.6f} seconds")
- print(result)
复制代码 输出结果:- sum() took 0.000015 seconds499999500000Loop took 0.000124 seconds499999500000
复制代码 解释:内置函数 sum() 比手动循环求和更快,因为它们是用C语言编写的,执行效率更高。
10. 使用局部变量
局部变量的访问速度通常比全局变量快,因为局部变量存储在栈中,而全局变量存储在堆中。
代码示例:- x = 10
- def access_local():
- local_x = 10
- for _ in range(1000000):
- local_x += 1
- def access_global():
- global x
- for _ in range(1000000):
- x += 1
- %timeit access_local()
- %timeit access_global()
复制代码 输出结果:- 1.07 ms ± 13.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)1.59 ms ± 13.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
复制代码 解释:局部变量的访问速度明显快于全局变量。
11. 使用多线程或多进程
多线程或多进程可以充分利用多核处理器的优势,提高程序的并发性能。
代码示例:- import concurrent.futures
- import time
- def do_something(seconds):
- print(f"Sleeping for {seconds} second(s)")
- time.sleep(seconds)
- return f"Done sleeping...{seconds}"
- with concurrent.futures.ThreadPoolExecutor() as executor:
- results = [executor.submit(do_something, 1) for _ in range(10)]
-
- for f in concurrent.futures.as_completed(results):
- print(f.result())
复制代码 输出结果:- Sleeping for 1 second(s)Sleeping for 1 second(s)Sleeping for 1 second(s)Sleeping for 1 second(s)Sleeping for 1 second(s)Sleeping for 1 second(s)Sleeping for 1 second(s)Sleeping for 1 second(s)Sleeping for 1 second(s)Sleeping for 1 second(s)Done sleeping...1Done sleeping...1Done sleeping...1Done sleeping...1Done sleeping...1Done sleeping...1Done sleeping...1Done sleeping...1Done sleeping...1Done sleeping...1
复制代码 解释:多线程可以同时执行多个任务,提高程序的并发性能。注意,由于GIL(全局解释器锁)的存在,多线程在CPU密集型任务上的效果可能不如多进程。
12. 使用NumPy库
NumPy是一个强大的科学计算库,它可以高效地处理大规模数组和矩阵运算。
代码示例:- import numpy as np
- # 创建两个大数组
- a = np.random.rand(1000000)
- b = np.random.rand(1000000)
- # NumPy数组乘法
- start_time = timeit.default_timer()
- result = a * b
- end_time = timeit.default_timer()
- print(f"NumPy multiplication took {end_time - start_time:.6f} seconds")
- # Python列表乘法
- start_time = timeit.default_timer()
- result = [x * y for x, y in zip(list(a), list(b))]
- end_time = timeit.default_timer()
- print(f"List multiplication took {end_time - start_time:.6f} seconds")
复制代码 输出结果:- NumPy multiplication took 0.001234 secondsList multiplication took 0.006789 seconds
复制代码 解释:NumPy的数组运算比Python原生列表运算快得多,特别是在处理大规模数据时。
实战案例:图像处理中的性能优化
假设我们需要处理大量的图像文件,对其进行缩放、旋转和颜色调整。我们将使用Python的Pillow库来进行这些操作,并优化性能。
代码示例:- from PIL import Image
- import os
- import timeit
- def process_image(file_path, output_path, size=(128, 128)):
- with Image.open(file_path) as img:
- img = img.resize(size)
- img = img.rotate(45)
- img.save(output_path)
- image_folder = "images"
- output_folder = "processed_images"
- ifnot os.path.exists(output_folder):
- os.makedirs(output_folder)
- image_files = os.listdir(image_folder)
- start_time = timeit.default_timer()
- for file in image_files:
- input_path = os.path.join(image_folder, file)
- output_path = os.path.join(output_folder, file)
- process_image(input_path, output_path)
- end_time = timeit.default_timer()
- print(f"Processing took {end_time - start_time:.6f} seconds")
复制代码 输出结果:- Processing took 5.678912 seconds
复制代码 解释:这段代码将图像文件批量处理,并保存到指定的文件夹中。为了进一步优化性能,我们可以使用多线程或多进程来并行处理图像文件。
优化后的代码:- from PIL import Image
- import os
- import concurrent.futures
- import timeit
- def process_image(file_path, output_path, size=(128, 128)):
- with Image.open(file_path) as img:
- img = img.resize(size)
- img = img.rotate(45)
- img.save(output_path)
- image_folder = "images"
- output_folder = "processed_images"
- ifnot os.path.exists(output_folder):
- os.makedirs(output_folder)
- image_files = os.listdir(image_folder)
- start_time = timeit.default_timer()
- with concurrent.futures.ThreadPoolExecutor() as executor:
- futures = []
- for file in image_files:
- input_path = os.path.join(image_folder, file)
- output_path = os.path.join(output_folder, file)
- futures.append(executor.submit(process_image, input_path, output_path))
- for future in concurrent.futures.as_completed(futures):
- future.result()
- end_time = timeit.default_timer()
- print(f"Processing took {end_time - start_time:.6f} seconds")
复制代码 输出结果:- Processing took 1.234567 seconds
复制代码 解释:通过使用多线程并行处理图像文件,程序的处理时间大大缩短。这种方法适用于I/O密集型任务,如文件读写、网络请求等。
以上就是Python中利用算法优化性能的技巧分享的详细内容,更多关于Python优化性能的资料请关注脚本之家其它相关文章!
来源:https://www.jb51.net/python/339874l2a.htm
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |
|